Диагонали равнобедренной трапеции точкой пересечения делятся в отношении 2:5. Вычисли...

0 голосов
567 просмотров

Диагонали равнобедренной трапеции точкой пересечения делятся в отношении 2:5.
Вычисли периметр трапеции, меньшее основание которой равно высоте и равно 4 см.


Геометрия (69 баллов) | 567 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

О - точка пересечения диагоналей ВD и АС. ВО/OD=2/5. h=BC=4
1) Тр-ки ВОС и AOD подобны по трем соответственно равным углам (1 пара вертикальных и 2 пары накрест лежащих). Из подобия следует пропорциональность сходственных сторон: BC/AD=BO/OD; AD=BC*OD/BO=4*5/2=10.
2) Проведем две высоты ВN и СМ. Высоты разделят нижнее основание на отрезки;
NM=BC=4; AN=MD=(AD-NM)/2=3.
3) Тр-к ABN с катетами BN=4 и AN=3 - египетский. Значит, гипотенуза АВ=5. (А можно найти АВ по теореме Пифагора),
4) Р=2*АВ+BC+AD=10+4+10=24 см.

(381 баллов)