Два автомобиля выезжают одновременно из одного города в другой. Скорость первого ** 20...

0 голосов
161 просмотров

Два автомобиля выезжают одновременно из одного города в другой. Скорость первого на 20 км/ч больше скорости второго, и поэтому первый автомобиль приезжает на место на 2 часа 24 минуты раньше второго. Найдите, с какой скоростью шёл первый автомобиль, если известно, что расстояние между городами составляет 420 км.


Алгебра (302 баллов) | 161 просмотров
Дан 1 ответ
0 голосов

Обозначаем скорость первого автомобиля за х км/ч, тогда скорость второго автомобиля (х-20) км/ч. Первый автомобиль проедет расстояние между городами за 420/х часов, второй за 420/(x-20) часов. Получаем уравнение (переводя 24 минуты в 2/5 часа) :
420/(x-20)-420/x=2 2/5
Домножаем обе части уравнения на общий знаменатель х*(х-20)*5:
2100*х-2100*(х-20)=12*х*(х-20)
Умножаем обе части уравнения на 1/12 (для упрощения вычислений! ) и открываем скобки:
175*х-175*х+3500=x^2-20*x
Приводим подобные и переносим все части уравнения влево, после чего умножаем обе части уравнения на -1. Получаем квадратное уравнение:
x^2-20*x-3500=0
Решаем приведенное квадратное уравнение вида x^2+px+q=0:
x1,2=10+/-sqrt(100+3500)=10+/-60
x1=70 (км/ч)
х2=-50 посторонний корень, не имеющий физического смысла, скорость автомобиля не может быть в данном случае ОТРИЦАТЕЛЬНОЙ.
Проверка: Первый автомобиль проедет расстояние за 420/70=6 часов, второй за 420/(70-20)=8 2/5 часа. Первый автомобиль приедет на 8 2/5-6=2 2/5 часа=2 часа 24 минуты раньше второго, что совпадает с условием задачи.
Ответ: Скорость первого автомобиля 70 километров в час.

(102 баллов)