Log2(3x+2)-log2(1-2x)>2
ОДЗ 0} \atop {1-2x>0}} \right. <=> \left \{ {{3x>-2} \atop {-2x>-1}} \right. <=>\left \{ {{x>-\frac{2}{3}} \atop {x<\frac{1}{2}}} \right. \\\ (-\frac{2}{3};\frac{1}{2}})" alt=" \left \{ {{3x+2>0} \atop {1-2x>0}} \right. <=> \left \{ {{3x>-2} \atop {-2x>-1}} \right. <=>\left \{ {{x>-\frac{2}{3}} \atop {x<\frac{1}{2}}} \right. \\\ (-\frac{2}{3};\frac{1}{2}})" align="absmiddle" class="latex-formula"> 2\\\ log_2\frac{3x+2}{1-2x}>2\\\ \frac{3x+2}{1-2x}>2^2\\\ \frac{3x+2}{1-2x}>4\\\ 3x+2<4(1-2x)\\\ 3x+2<4-8x\\\ 3x+8x<4-2\\\ 11x<2\\\ x<\frac{2}{11}" alt="log_2(3x+2)-log_2(1-2x)>2\\\ log_2\frac{3x+2}{1-2x}>2\\\ \frac{3x+2}{1-2x}>2^2\\\ \frac{3x+2}{1-2x}>4\\\ 3x+2<4(1-2x)\\\ 3x+2<4-8x\\\ 3x+8x<4-2\\\ 11x<2\\\ x<\frac{2}{11}" align="absmiddle" class="latex-formula"> учитывая ОДЗ