Ответ: доказать это невозможно.
Объясняю: рисуем угол, проводим его биссектрису, берем на ней точку P. Проводим окружность с центром в точке P так, чтобы она каждую сторону угла пересекала в двух точках. Пусть на одной стороне это точки M_1 и M_2 (M_1 ближе к вершине угла, M_2 дальше), на второй -K_1 и K_2 (K_1 ближе к вершине угла, K_2 дальше).
Если из точек M_1, M_2 выбрать, скажем M_1, а из точек K_1, K_2 выбрать K_2, то DM_1≠DK_2, хотя все условия задачи выполнены.
Эта ситуация является хорошей иллюстрацией, почему есть признак равенства треугольников по двум сторонам и углу между ними, но нет признака по двум сторонам и углу не между ними (то есть такой признак можно было бы придумать, но пришлось бы давать дополнительную информацию, скажем по поводу того, являются ли наши треугольники остроугольными или тупоугольными)