Помогите!!!!!!УМОЛЯЮ!!!!! номер 243 и 247(а)

0 голосов
30 просмотров

Помогите!!!!!!УМОЛЯЮ!!!!! номер 243 и 247(а)


image

Геометрия (907 баллов) | 30 просмотров
0

Привет

0

прив

Дано ответов: 2
0 голосов
Правильный ответ

Вариант решения. 
№. 243.
Через вершину С треугольника АВС проведена прямая, параллельная его биссектриса АА1 и пересекающая прямую АВ в точке D. Докажите, что АС=AD. 
––––––––
 По свойству углов при пересечении параллельных прямых секущей ∠ВАА1=∠ADC как соответственные, ∠А1АС=∠АСD как накрестлежащие. Но ∠ВАА1=∠А1АС, т.к.  биссектриса делит ∠А на два равных. ⇒∠АDC=∠ACD. Равенство углов при одной стороне  - признак равнобедренного треугольника. ⇒АС=АD, ч.т.д.

№ 247. 
На рисунке 130 АВ=АС, АР=AQ. Докажите, что:
а) треугольник ВОС – равнобедренный;
б) прямая ОА проходит через середину основания ВС и перпендикулярна к нему. 
–––––––
а) ∆ АВС - равнобедренный, АВ=АС,  АР=AQ, следовательно, ВР=СQ как вторые части равных сторон. В ∆ ВРС и ∆ СQВ стороны ВР=CQ, ВС - общая, и ∠РВС=∠QCB (равные углы при основании равнобедренного треугольника). 
Если две стороны и угол, заключенный между ними, одного треугольника соответственно равны двум сторонам и углу, заключенному между ними, другого треугольника, то такие треугольники равны.(1-й признак равенства треугольников) 
При основании треугольника ВОС ∠ОВС=∠ОСВ, из чего следует, что ∆ ВОС - равнобедренный.  
б)
В ∆ АВО и ∆ АОС стороны АВ=АС, ВО=ОС (доказано выше), АО - общая. ⇒ ∆ АВО=∆ АОС, ⇒углы при вершине А равны, и прямая, проходящая через О к основанию ВС – биссектриса равнобедренного ∆ АВС. Биссектриса равнобедренного треугольника, проведенная к основанию,  является его высотой и медианой, поэтому прямая АО перпендикулярна к ВС и проходит через его середину. .

(228k баллов)
0 голосов

Прикрепляю.................................


image
(55.5k баллов)
0

Блин вы очень долго делали я уже здала тетради ну лан