Рассмотрим рисунок.
Половина плоского угла при вершине S равна 30°,
следовательно, угол ВSС=60°.
Треугольник ВSС равнобедренный и правильный , раз угол при вершине равен 60° ( пирамида правильная и проекция вершины падает на центр основания, проекции ребер на основание равны, и ребра равны между собой). Площадь боковой поверхности правильной пирамиды является суммой площадей ее граней.
Так как грани - правильные треугольники и равны между собой,
S бок =4 S BSC
Формула площади правильного треугольника
S BSC =(а² √3):4
Sбок=4*(а² √3):4=а² √3=36 √3 единиц площади.