Найти множество точек координатной плоскости удовлетворяющих уравнению 1)...

0 голосов
200 просмотров

Найти множество точек координатной плоскости удовлетворяющих уравнению
1) x^2+4y-6x+20y+25=0
2)9x^2+y^2-12x+4y-8=0.


Алгебра (28 баллов) | 200 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Кривые второго порядка.
1) Тут явно опечатка, должно быть 4y^2.
x^2 - 6x + 4y^2 + 20y + 25 = 0
(x^2 - 6x + 9) - 9 + 4(y^2 + 2*y*5/2 + 25/4) - 25 + 25 = 0
(x - 3)^2 + 4(y + 5/2)^2 = 9
(x - 3)^2 / 9 + (y + 5/2)^2 / (9/4) = 1
Это эллипс с центром (3, -5/2) и полуосями a = √9 = 3; b = √(9/4) = 3/2

2) 9x^2 - 12x + y^2 + 4y - 8 = 0
9(x^2 - 12/9*x) + (y^2 + 4y) - 8 = 0
9(x^2 - 2*x*2/3 + 4/9) - 4 + (y^2 + 4y + 4) - 4 - 8 = 0
9(x - 2/3)^2 + (y + 2)^2 = 16
(x - 2/3)^2 / (16/9) + (y + 2)^2 / 16 = 1
Это эллипс с центром (2/3; -2) и полуосями a = √(16/9) = 4/3; b = √16 = 4

(320k баллов)