В равнобедренном треугольнике ABC медианы пересекаются в точке O. Длина основания AC...

0 голосов
39 просмотров

В равнобедренном треугольнике ABC медианы пересекаются в точке O.
Длина основания AC равна 24 см, CO = 15 см. Через точку O проведена прямая
l ,параллельная отрезку AB. Вычислите длину отрезка прямой l,заключенного
между сторонами AC и BC треугольника ABC.


Геометрия (79 баллов) | 39 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Дан треугольник АВС, ВН - медиана к стороне АС, АК - мелиана к стороне ВС. Пусть L пересекает АС в точке Х, а ВС в У. Нужно найти ХУ.
Треугольник АВН подобен треугольнику ХОН (они оба прямоугольные; угол ВАН=угол ОХН, поскольку АВ||ХУ; угол АВН=угол ХОН). Тогда АВ/ХО=ВН/ОН=АН/ХН. (*)
Поскольку АС = 24 см, а ВН - медиана, то АН=НС=12 см. Из треугольника НОС: ОН=корень из (СО^2 - СН^2)=корень из (225-144)=9 (см). По свойству медианы: ВО/ОН=2:1, тогда ВО=18 см, а ВН=27 см.
(*)=> ВН/ОН=АН/ХН. 27/9 = 12/ХН. ХН=4 см.
Из треугольника ХОН по теореме Пифагора ОХ = корень из 97 (см).
Тогда длина ХУ = 2ОХ = 2×корень из 97 (см).
Ответ: ХУ = 2×корень из 97 (см).

(9.2k баллов)