В треугольнике АВС известно,что угол В=90 градусов,угол АСВ=60 градусов,отрезок...

0 голосов
419 просмотров

В треугольнике АВС известно,что угол В=90 градусов,угол АСВ=60 градусов,отрезок СД-биссектриса треугольника.Найдите катет АВ,если ВД=5см.


Геометрия | 419 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

С=60°. СД  - биссектриса и делит его на 2 угла по 30°. 

Сумма острых углов прямоугольного треугольника равна 90°. ⇒

В ∆ АВС ∠ А=90°-60°=30°

В ∆ АДС САД= ∠АСД=30°. Равенство углов при одной из сторон -  признак равнобедренного треугольника.  Следовательно, АД=ДС. 

∆ ВСД - прямоугольный, катет ВД противолежит  углу 30° и равен половине гипотенузы СД  (свойство).  

Следовательно, СД=2ВД=10 см

Катет АВ=СД=10 см. 

АВ=ВД+АД=5+10=15 см

(228k баллов)
0 голосов

Прикрепляю.........................


image
(55.5k баллов)