Пусть ВС и AD — диагонали параллелограмма AВDС (черт. 226). Докажем, что АО = OD и СО = ОВ.
Для этого сравним какую-нибудь пару противоположно расположенных треугольников, например /\ AОВ и /\ СОD.В этих треугольниках АВ = СD, как противоположные стороны параллелограмма;
/
1 = /
2, как углы внутренние накрест лежащие при параллельных АВ и СD и секущей AD;
/
3 = /
4 по той же причине, так как АВ || СD и СВ — их секущая .Отсюда следует, что /\ AОВ = /\ СОD. А в равных треугольниках против равных углов лежат равные стороны. Следовательно, АО = OD и СО = ОВ.