Докажите, что в прямоугольной треугольника медианы, проведенная из вершины прямого угла,...

0 голосов
37 просмотров

Докажите, что в прямоугольной треугольника медианы, проведенная из вершины прямого угла, равна половине гипотенузы
7 КЛАСС


Геометрия (47 баллов) | 37 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1) В прямоугольном треугольнике АВС из вершины прямого угла С проведем к гипотенузе AB отрезок CO так, чтобы CO=OA.

2) ∆ AOC — равнобедренный с основанием AC (по определению равнобедренного треугольника).

 Значит, у него углы при основании равны:∠OAC=∠OCA=α.

3) Так как сумма острых углов прямоугольного треугольника равна 90º, то в треугольнике ABC ∠B=90º- α.

4) Так как ∠BCA=90º (по условию), то ∠BCO=90º- ∠OCA=90º-α.

 

5) Рассмотрим треугольник BOC.

∠BCO=90º-α, ∠B=90º- α, следовательно, ∠BCO=∠B.

Значит, треугольник BOC — равнобедренный с основанием BC (по признаку равнобедренного треугольника).

Отсюда BO=CO.

6) Так как CO=OA (по построению) и BO=CO (по доказанному), то CO=OA=BO, AB=OA+BO=2∙OA=2∙CO.

Таким образом, точка O — середина гипотенузы AB, отрезок CO соединяет вершину треугольника с серединой противолежащей стороны, значит, CO — медиана, проведенная к гипотенузе, и она равна половине гипотенузы

Что и требовалось доказать.


(90 баллов)