1.В треугольнике ОСО1: О1С перпендикулярна ОА.
Значит ОсО1=АВ, как противоположные стороны прямоугольника.
О1С=√[(R+r)²-(R-r)²]=√[(R²+2Rr+r²-R²+2Rr-r²] или
О1С=√4Rr или √(2R*2r).
Что и требовалось доказать.
P.S. √4Rr=2√Rr.
2.АС параллельна ВD. Тогда ОК - высота этого прямоугольника из прямого угла и по свойству этой высоты ОК²=СК*КD.
Но СК=АС, а КD=BD как касательные к окружности из одной точки.
Следовательно, ОК=√АС*ВD, что и требовалось доказать.