1) х/(2х+3) - 1/х = 0
(х*х - (2х+3)*1)/х*(2х+3) = 0
(х^2 -2x -3)/x*(2x+3) = 0 - эта дробь имеет смысл, если её знаменатель х*(2х+3) не= 0
х не=0; 2х+3 не=0, х не= -1,5
рассмотрим числитель х^2 -2x -3 - это квадратное уравнение
х^2 -2x -3 = 0
Найдём Д = в^2 - 4ac = (-2)^2 -4*1*(-3) = 4+12 = 16. Корень из Д = 4
x = (-(-2) +4):2 = 3, х = (-(-2)-4)/2 = -1
Ответ: корни уравнения -1; 3
2) = b^2 - c^2 -b^2 +2bc = 2bc -c^2 = c*(2b - c)
3) Выразим х из первого уравнения: х = 7-4у, подставим это выражение во второе уравнение: 7- 4у -2у = -5
-6у = -12
у = 2, теперь найдём х
х = 7 -4*2 = 7 -8 = -1
Ответ: корни системы уравнений х= -1, у= 2
4) 3y +12 <или = 9; 3у <или= 9-12; у<или= -1<br>Ответ: при всех у< или= -1 данное выражение будет не больше 9
5) начертить не умею, а наименьшее значение функции у = 4 при х=0
6) = ах*(х-1)/ах = х-1
7) Пусть х -девятиклассников, тогда 0,8х - десятиклассников
х +0,8х = 162
1,8х =162
х = 90 - девятиклассников
0,8х = 0,8*90 = 72 - десятиклассника