Дано: треугольник АВС, АВ=АС=15 см, P треугольника АВС=48 Найти: ВМ, АВ. r (в этот...

0 голосов
33 просмотров

Дано: треугольник АВС, АВ=АС=15 см, P треугольника АВС=48
Найти: ВМ, АВ. r
(в этот треугольник вписана окружность)


Геометрия (21 баллов) | 33 просмотров
Дан 1 ответ
0 голосов

Треугольник равнобедренный по условию задачи.
Для ее решения нужно вспомнить теорему об отрезках касательных к окружности из одной точки. Они равны.
ВС делится точкой касания окружности на 2 равные части.
ВС=48-2*15=18
ВМ=ВD=9 cм
AM=AB-BM=15-9
AM=6 cм
Радиус вписанной окружности находят по формуле
r=S:p, где S- площадь треугольника, а p - его полупериметр.
Чтобы найти площадь, нужно знать высоту. Она равна 12( вычислите по теореме Пифагора или вспомните, что если провести из вершины А высоту, получится египетский треугольник с отношением сторон 3:4:5)
S=12*18:2=108 см²
р=48:2=24
r=108:24=4,5 см