1. Дана функция: ()= -x^3-3x^2+9x-2 Найдите: а) промежутки возрастания и убывания; б) ее...

0 голосов
63 просмотров

1. Дана функция: ()= -x^3-3x^2+9x-2

Найдите:

а) промежутки возрастания и убывания;

б) ее точки максимума и минимума;

в) наибольшее и наименьшее ее значения на промежутке [–2; 2].


Алгебра (102 баллов) | 63 просмотров
Дан 1 ответ
0 голосов
y=-x^3-3x^2+9x-2
y'=-3x
²-6x+9
критические точки
y'=0  -x²-2x+3=0   x²+2x-3=0   по теореме Виета  x1=-3   x2=1

------------------ -3---------------------1----------------------
       -                             +                        -
убывает               возрастает             убывает
 
x=-3 точка  ymin=27-27-27-2=-29
x=1  ymax=-1-3+9-2=3

для поиска наибольшего и наименьшего значения надо еще посчитать у на границах интервала.  x=-2   y=-24  ; x=2   y=-4
 
наименьшее значение -29    наибольшее 4
(187k баллов)