Сторона правильной треугольной пирамиды равна 3 см. Боковое ребро образует с высотой угол...

0 голосов
71 просмотров

Сторона правильной треугольной пирамиды равна 3 см. Боковое ребро образует с высотой угол 30 градусов. Найти S и V


Геометрия (15 баллов) | 71 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Дано: сторона основания а = 3 см, угол α = 30°.
Находим высоту h основания:
h = a*cos30° = 3√3/2.
Проекция бокового ребра на основание равна (2/3)*h = (2/3)*(3√3/2) = √3.
Высота Н пирамиды равна: 
Н = ((2/3)*h)*tgα = √3*(1/√3) = 1 см.
Площадь So основания равна
So = a²√3/4 = 3²√3/4 = 9√3/4 ≈   3,897114 см².
Периметр основания Р = 3а = 3*3 = 9 см.
Находим апофему А, проекция которой на основание равна (1/3)h.
(1/3)h = (1/3)*(3√3/2) = √3/2 см.
A = 
√(H² +( (1/3)h)²) = √(1² + (√3/2)²) = √(1 + (3/4)) = √7/2 ≈ 1,322876 см.
Площадь Sбок боковой поверхности равна:
Sбок = (1/2)РА = (1/2)*9*(
√7/2) = 9√7/4 ≈ 5,95294.
Площадь S полной поверхности пирамиды равна:
S = So + Sбок = (
9√3/4) + (9√7/4) = (9/4)(√3 + √7) ≈ 9,198002.
Объём V пирамиды равен:
 V = (1/3)So*H = (1/3)*
(9√3/4)*1 = (3√3/4) ≈  1,299038 см³.

(309k баллов)