Ребят решите пожалуйста пример Решите уравнение (x+3)^4+2(x+3)^2-8=0 ОН ИЗ ВТОРОЙ ЧАСТИ, РАЗБЕРИТЕ ПОЖАЛУЙСТА
( Х + 3 )^4 + 2( Х + 3 )^2 - 8 = 0 ( Х + 3 )^2 = а ; а > 0 а^2 + 2а - 8 = 0 D = 4 + 32 = 36 = 6^2 a1 = ( - 2 + 6 ) : 2 = 2 a2 = ( - 2 - 6 ) : 2 = - 4 ( < 0 ) ( x + 3 )^2 = 2 X^2 + 6x + 9 = 2 X^2 + 6x + 7 = 0 D = 36 - 28 = 8 = ( 2 V 2 )^2 X1 = ( - 6 + ( 2 V 2 )) : 2 = - 3 + V 2 X2 = ( - 6 - ( 2 V 2 )) : 2 = - 3 - V 2 Ответ ( - 3 + V 2 ) ; ( - 3 - V 2 )
V корень квадратный
Первоначальное уравнение квадратное относительно (x+3)^2 Теорема Виетта - сумма корней -2 , произведение -8 (x+3)^2 = -4 ; 2 (x+3)^2 = -4 корней нет квадрат всегда положительный (x+3)^2= 2 x+3 = +-√2 Ответ : x1 = -3 +√2 x2 = -3 -√2