В прямоугольном треугольнике НРЕ (Н=90) ЕL – биссектриса угла Е. Отрезок LE в два раза...

0 голосов
50 просмотров

В прямоугольном треугольнике НРЕ (Н=90) ЕL – биссектриса угла Е. Отрезок LE в два раза больше отрезка LH и на 8см меньше отрезка НР. Найти катет РН.


Геометрия (44 баллов) | 50 просмотров
0

ответа в учебнике нет?

0

Чтобы проверить?

Дан 1 ответ
0 голосов
Правильный ответ

Пусть HPE - прямоугольный треугольник с катетами HP и HE, гипотенузой PE. LE - биссектриса угла E

В прямоугольном треугольнике LHE: LH и HE - катеты, LE - гипотенуза.
По условию гипотенуза LE в 2 раза больше катета LH ⇒ угол LEH= 30° т.к. катет, противолежащий углу 30°, равен половине гипотенузы. 

Угол PEL равен 30°, т.к. биссектриса LE делит угол PEH пополам ⇒
⇒ угол PEH = 30 + 30 = 60° ⇒ угол EPH = 180 - 90 - 60 = 30° ⇒ треугольник PLE - равнобедренный с основанием PE, углами при основании равными 30° каждый ⇒ PL = LE как боковые стороны равнобедренного треугольника. 

Пусть LE = Х, тогда
PL = Х
LH = X / 2
HP = X + 8 (по условию)
HP = PL + LH = X + X/2

x + x/2 = x + 8
x - x + x/2 = 8
x/2 = 8
x = 8 * 2
x = 16

LE = 16 (cм)
HP = 16 + 8 = 24 (см)

Ответ: 24 cм

(9.7k баллов)