Решить \/2*sin7П/8*cos7П/8
√2sin(7π/8)cos(7π/8)=(√2√2sin(7π/8)cos(7π/8))/√2= =2sin(7π/8)cos(7π/8)/√2=(sin2(7π/8))/√2=(sin(7π/4))/√2= =(-sin(π/4))/√2=((-√2)/2)/√2)=-1/2 (2sinxcosx=sin2x)