Решить уравнение: -sin(x/2)+cos(x/4)=0
-sin(x/2) + cos(x/4) = 0 Разложим sin(x/2) по формуле удвоенного аргумента -2cos(x/4)sin(x/4) + cos(x/4) = 0 cos(x/4)[-2sin(x/4) + 1] = 0 cos(x/4) = 0 x/4 = π/2 + πn, n ∈ Z x = 2π + 4πn, n ∈ Z -2sin(x/4) = -1 sin(x/4) = 1/2 x/4 = (-1)ⁿπ/6 + πk, k ∈ Z x = (-1)ⁿ2π/3 + 4πk, k ∈ Z Ответ: x = 2π + 4πn, n ∈ Z; (-1)ⁿ2π/3 + 4πk, k ∈ Z.