Из пунктов А и В, расстояние между которыми равно 120 км, навстречу друг другу движутся...

0 голосов
51 просмотров

Из пунктов А и В, расстояние между которыми равно 120 км, навстречу друг другу движутся два поезда. Если первый поезд выйдет из А на 2 часа раньше, чем второй поезд выйдет из В, то они встретятся на середине пути. За какое время первый поезд проходит расстоянии от А до В, если через один час после встречи расстояние между поездами равно 80 км?


Алгебра (290 баллов) | 51 просмотров
Дан 1 ответ
0 голосов

Пусть x км/ч - скорость 1-го поезда, y км/ч - скорость 2-го поезда.

Известно, что на половину пути (120 / 2 = 60 км) первый поезд затратил на 2 часа больше, чем второй, т.е. справедливо уравнение: \frac{60}{x}- \frac{60}{y} =2

После встречи поезда едут в разные стороны ровно 1 час и расстояние между ними становится 80 км, т.е. справедливо уравнение: x*1+y*1=80

Получаем систему уравнений:

\left \{ {{ \frac{60}{x} -\frac{60}{y}=2} \atop {x+y=80}} \right. 

\left \{ {{ 60y-60x=2xy} \atop {y=80-x}} \right. 

\left \{ {{ 30(80-x)-30x=x(80-x)} \atop {y=80-x}} \right. 

Отдельно 1-е уравнение:

2400-30x-30x-80x+x^{2}=0

x^{2}-140x+2400=0

\frac{D}{4} =(-70)^{2}-2400=2500

x_{1} =70-50=20

x_{2} =70+50=120

y_{1} =80-20=60

y_{2} =80-120<0 не удовлетворяет усл. задачи, значит, и х = 120 нам не подходит.<br>
Значит, скорость 1-го поезда = 20 км/ч и расстояние от А до В он пройдет за 120/20 = 6 часов.

Ответ: 6 часов.

(29 баллов)