Пусть две несовпадающие пересекающиеся прямые a и b имеют по крайней мере 2 общие точки P и Q.
Есть аксиома планиметрии, которая постулирует, что через любые две точки можно провести прямую и притом только одну. А у нас через две точки P и Q проходит аж две прямые, что противоречит этой аксиоме планиметрии.
Впрочем, если построить аксиоматику по-другому, когда две пересекающиеся прямые могут иметь и больше одной общей точки. Только это будет планиметрия не на плоскости.