Представим данное выражение в виде
. Так как среди любых трех последовательных целых чисел по крайней мере одно делится на 2 и одно на 3, то при любых целых n число делится на Следовательно, число делится на 6, если n - любое число.
Докажем, что делится на 7, если n - натуральное число. Для начала исследуем методом математической индукции
1. При имеем - кратное 7.
2. Допустим, что делится на 7 при каком-нибудь произвольном натуральном , т.е. кратно 7.
3. Докажем, что делится на 7 и при
Первое слагаемое кратно 7 по допущению второго пункта, а второе слагаемое кратно 7, так как на 7 делятся все его слагаемые, следовательно, картно 7, если n - натуральное число.