Пожалуйста помогите с решением задания 278 , с пояснением!!!!!

0 голосов
20 просмотров

Пожалуйста помогите с решением задания 278 , с пояснением!!!!!


image

Алгебра (36 баллов) | 20 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1) a=10^{37}-199 делится на 99. Добавим к a 99, умноженное на 2 - делимость на 99 при этом не изменится, а число упростится:

a+2\cdot 99=10^{37}-1=9999\ldots 999 (всего 36 девяток).

Теперь можно или просто разделить получившееся число на 99 - получится 

10101\ldots 0101 (18 единиц и 17 нулей),

или сослаться на признаки делимости на 9 (сумма цифр должна делиться на 9) и на 11 (сумма цифр с чередованием знаков должна делиться на 11).

2) a=2^{25}+1.

2^{5}=32=33-1

(математики говорят так: число 2 в пятой степени сравнимо с минус 1 по модулю 33. А тогда 

2^{10}=(2^5)^2=(33-1)^2=33^2-2\cdot 33 +1

(то есть два в десятой сравнимо с 1 по модулю 33; иными словами, два в десятой дает остаток 1 при делении на 33). Можно сказать, что 

2^{10}=33A+1.

А тогда 

2^{20}=(2^{10})^2=33B+1

(соображайте сами, что это за B там возник). То есть два в двадцатой сравним с 1 по модулю 33. А два в пятой был сравним с минус единицей по модулю 33. Если Вы правильно поняли мои рассуждения, Вам несложно будет сообразить, что отсюда следует, что

2^{25}=2^{20}\cdot 2^5

будет сравним с минус единицей, а тогда 2^{25}+1 будет сравним с нулем по модулю 33. Что и означает, что это число делится на 33.

(64.0k баллов)