В треугольнике ABC AB=8, а AC=10. Биссектриса BD, проведённая из вершины B к стороне AC,...

0 голосов
43 просмотров

В треугольнике ABC AB=8, а AC=10. Биссектриса BD, проведённая из вершины B к стороне AC, делится центром О вписанной окружности так, что BO:OD=3:2. найдите сторону BC


Математика (47 баллов) | 43 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Центр вписанной окружности - точка пересечения биссектрис

биссектриса делит сторону, к которой проведена, в отношении двух других сторон

поэтому из треугольника ABD:

AB/AD = 3/2

AD = AB/(3/2) = 8*2/3 = 16/3

DC = 10 - 16/3 = 14/3

из треугольника BCD:

BC/DC = 3/2
BC = DC * 3/2
BC = 14/3 * 3/2 = 7

Ответ: 7

(271k баллов)