Найдите три последовательных натуральных числа, такие, что квадрат среднего числа в 5 раз...

0 голосов
74 просмотров

Найдите три последовательных натуральных числа, такие, что квадрат среднего числа в 5 раз больше разности квадратов двух крайних чисел.


Алгебра (178 баллов) | 74 просмотров
Дан 1 ответ
0 голосов

Пусть х- первое натуральное число. Так как по условию задачи числа должны быть последовательными, то второе число (х+1), третье- (х+2). Известно, что квадрат второго числа в 5 раз больше разности квадратов двух крайних чисел (то есть третьего и первого), поэтому мы можем составить уравнение.
(х+1)^2=5 * ((x+2)^2-x^2))
x^2+2x+1=5 *(x+2-x) (x+2+x)
x^2+2x+1=5*2*(2x+2)
x^2+2x+1=10*(2x+2)
x^2+2x+1=20x+20
x^2-18x-19=0
По теореме Виета:
x1=19 , то есть первое число 19.
х2=-1, не подходит по условию (числа должны быть натуральными).
Значит, второе число- 19+1= 20
третье число-19+2=21.
Ответ:19,20,21.

(4.2k баллов)