Чему равно наименьшее значение выражения? Использование производной не приветствуется

0 голосов
55 просмотров

Чему равно наименьшее значение выражения

\sqrt{x^2-x+1}+\sqrt{x^2-x\sqrt{3}+1}?

Использование производной не приветствуется


Геометрия (64.0k баллов) | 55 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Выделим полные квадраты в подкоренных выражениях:
x^{2} - x + 1 = x^{2} - 2 * \frac{1}{2} x + 1 = x^{2} - x + \frac{1}{4} - \frac{1}{4} + 1 = (x^{2} - x + \frac{1}{4} ) + \\ \frac{3}{4} = (x - \frac{1}{2}) ^{2} + \frac{3}{4}

x^{2} - \sqrt{3} x + 1 = (x^{2} - 2 * \frac{ \sqrt{3} }{2} x + \frac{3}{4}) - \frac{3}{4} + 1 = (x - \frac{ \sqrt{3} }{2}) ^{2} + \frac{1}{4}

Для решения задачи используем векторную интерпретацию функции.
Пусть вектор a = \{x - \frac{ 1 }{2} , \frac{ \sqrt{3} }{2} \}, а вектор b  = \{-x + \frac{ \sqrt{3} }{2} , \frac{1}{2} \}
Здесь векторы заданы своими координатами.

Найдём координаты суммы  этих векторов.
a + b = \{ \frac{ \sqrt{3} - 1 }{2} , \frac{ \sqrt{3} + 1}{2} \}
Тогда его длина
|a + b| = \sqrt{ (\frac{ \sqrt{3} - 1 }{2})^{2} + ( \frac{ \sqrt{3} + 1}{2})^{2} } = \frac{ \sqrt{8} }{ 2 } = \sqrt{2}

Найдём длины каждого из введённых векторов. Очевидно, что они равны первому и второму слагаемым соответственно:

|a| = \sqrt{ (x - \frac{1}{2}) ^{2} + \frac{3}{4}} \\ |b| = \sqrt{(x - \frac{ \sqrt{3} }{2}) ^{2} + \frac{1}{4} }

А теперь воспользуемся неравенством треугольника для двух векторов.

А именно,
|a + b| \leq |a| + |b|
Это неравенство обращаем остриём вправо:
|a| + |b| \geq |a+b|

Наше выражение - это ни что иное, как сумма длин введённых векторов. Справа стоит длина суммы векторов, которую мы знаем.
Отсюда получаем наименьшее значение функции:

\sqrt{ x^{2} - x + 1} + \sqrt{ x^{2} - \sqrt{3} x + 1} \geq \sqrt{2}

Необходимо найти теперь точку, в которой достигается это наименьшее значение.
Проще всего это сделать из нашего же неравенства треугольника. В нужной точке, разумеется, достигается равенство. Равенство в неравенстве треугольника достигается при условии сонаправленности векторов.
Воспользуемся им.

Замечаем, что вторая координата первого вектора в корень из 3 раз больше соответствующей координаты второго. У сонаправленных векторов координаты пропорциональны. Значит,

x - \frac{1}{2} = \sqrt{3}(-x + \frac{ \sqrt{3} }{2} )
Решая это уравнение, мы получаем, что x = \frac{2}{1 + \sqrt{3} }
В этой точке достигается наименьшее значение функции.



(6.8k баллов)
0

Я поместил накануне подобную задачу. Надеюсь, что там кто-нибудь придумает решение, отличное от этого))

0

кстати, а Вы сами как решали эту задачу?

0

Расскажу, если никто не придумает)

0

хорошо )

0

спасибо за интересную задачу )

0

Не знаю, кто ее придумал, но нашел я ее у Шарыгина

0

Великий геометр )

0

даже я, нематематик, знаю эту фамилию

0

Согласен. Я провел несколько счастливых лет, решая задачи из его задачника "От учебной задачи к творческой"

0

вероятно, ощущения суперские )