Поставим каждому ученику в соответствие тройку чисел — номера групп, в которых он учится. Например, тройка (1, 3, 2) соответствует ученику, попавшему в первую группу по программированию, третью по английскому и вторую по физкультуре.
Заметим, что в тройке каждую цифру можно выбрать независимо из трёх различных вариантов, поэтому по правилу умножения существует всего 27 различных вариантов троек.
Различных троек не более 27, а учеников 28, поэтому по принципу Дирихле для каких-то двух учеников тройки обязаны совпасть. Это означает, что на всех трёх занятиях эти ученики были в одной группе.