Log2(x-1)+log2(x-3)=3

0 голосов
56 просмотров

Log2(x-1)+log2(x-3)=3


Алгебра (176 баллов) | 56 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

ОДЗ:
\left \{ {{x-1\ \textgreater \ 0} \atop {x-3\ \textgreater \ 0}} \right. \\
 \left \{ {{x\ \textgreater \ 1} \atop {x\ \textgreater \ 3}} \right. \\
x\ \textgreater \ 3\\===============\\
log_2(x-1)+log_2(x-3)=3\\
log_2(x-1)*(x-3)=log_22^3\\
x^2-3x-x+3=8\\
x^2-4x-5=0\\
D=16-4*1*(-5)=36\\
x_1= \frac{4+6}{2}=5\\
x_2= \frac{4-6}{2}=-1\\
Второй корень не удовлетворяет ОДЗ, поэтому единственное решение x = 5

(39.4k баллов)
0 голосов

Решение смотрите в приложении.