Решите уравнение: А) 2cosx-1=0 Б) sin^2x+3sinxcosx+2cos^2x=0
A) 2cosx - 1 = 0 2cosx = 1 cosx = 1/2 x = ±π/3 + 2πn, n ∈ Z б) sin²x + 3sinxcosx + 2cos²x = 0 |:cos²x tg²x + 3tgx + 2 = 0 tg²x + 2tgx + tgx + 2 = 0 tgx(tgx + 2) + (tgx + 2) = 0 (tgx + 1)(tgx + 2) = 0 tgx = -1 или tgx = -2 x = -π/4 + πn, n ∈ Z или x = arctg(-2) + πk, k ∈ Z