Task/25768411
--------------------
Упростите выражение 2(sin⁴α+sin²α*cos²α +cos⁴α) -(sin⁸α +cos⁸α)
---------------------------
2(sin⁴α+sin²α*cos²α +cos⁴α) -(sin⁸α +cos⁸α) =
(sin⁴α+2sin²α*cos²α +cos⁴α) + sin⁴α+cos⁴α -(sin⁸α +cos⁸α) =
(sin²α+cos²α)² + (sin⁴α - sin⁸α) + (cos⁴α -cos⁸α) =
1 +sin⁴α(1 -sin⁴α) +cos⁴α(1 -cos⁴α) =
1 +sin⁴α*(1 -sin²α)(1+sin²α) +cos⁴α*(1 -cos²α)(1+cos²α) =
1 +sin⁴α*cos²α*(1+sin²α) +cos⁴α*sin²α *(1+cos²α) =
1 +sin²α*cos²α*(sin²α+sin⁴α +cos²α+cos⁴α) =
1 +sin²α*cos²α*(1+sin⁴α +cos⁴α) =
1 +sin²α*cos²α*(1+(sin²α +cos²α)² - 2sin²α *cos²α) =
1 +sin²α*cos²α*(2 - 2sin²α *cos²α) =1 +(sinα*cosα)² (2-2(sinα *cosα)² ) =
1 +(1/4)sin²2α (2 - (1/2)*sin²2α) = 1 +(1/8)sin²2α (4 - sin²2α)=
1 +(1/32)*( 1-cos4α) (7 +cos4α)