Стороны параллелограмма равны 2 и 4,а диагонали относятся как корень из 3 корню из...

0 голосов
116 просмотров

Стороны параллелограмма равны 2 и 4,а диагонали относятся как корень из 3 корню из 7.найдите площадь параллелограмма?помогите пожалуйста!!!


Геометрия (48 баллов) | 116 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Параллелограмм ABCD.
По теореме косинусов в треугольнике АВD квадрат стороны ВD (диагональ параллелограмма) равен: BD² = AB²+AD²-CosA.
По теореме косинусов в треугольнике АCD квадрат стороны AC (диагональ параллелограмма) равен: AC² = AD²+DC²-Cos(180°-A). Заметим, что DC=АВ =2(стороны параллелограмма), угол BD² = AB²+AD²-CosA = 20-16CosA.
AC² = AD²+DC²-Cos(180°-A) = 20+16CosA.
BD/AC = √3/√7(дано) Тогда BD²/AC² =3/7. Подставляем значения и получаем:
CosA = 0,5. Значит
















(117k баллов)