Найти значение производной в точке x0 f(x) = (2x)(sin5x), x0=П/2 с подробным решением
У'=2(1+5кос(5х)).если х0=π\2,то: У'(х0)=2(1+0), у'(х0)=2.
F(x) = 2x * Sin5x f '(x) = 2(x' * Sin5x + x (Sin5x)' ) = 2(Sin5x + x * Cos5x * (5x)') = 2(Sin5x + + 5x*Cos5x) f '(π/2) = 2(Sin 5π/2 + 5π/2*Cos 5π/2) = 2[Sin(2π+π/2) + 5π/2 * Cos(2π+π/2)]= = 2(Sin π/2 + 5π/2 * Cos π/2) = 2( 1 + 5π/2 * 0) = 2