Пусть х см - сторона квадратного листа фонеры. Площадь первоначального листа - х^2 см^2. После того, как от фонеры отрезали полосу шириной 2м, остался прямоугольный лист со сторонами х и х-2 метров. Его площадь можно вычислить по формуле S=ab. S = x(x-2). По условию, площадь оставшейся фонеры - 24 м^2. Получим уравнение:
x(x-2) = 24
x^2-2x -24 = 0
D = 100
x = 6
x = -4 - не является решение всилу отрицательности.
6м - сторона исходного квадрата, тогда исходная площадь 36м^2