ПОЖАЛУЙСТА РЕШИТЕ!!!!!!!!!!!!!!!!!!!!!!!!!!!Длины сторон треугольника ABC соответственно...

0 голосов
116 просмотров

ПОЖАЛУЙСТА РЕШИТЕ!!!!!!!!!!!!!!!!!!!!!!!!!!!Длины сторон треугольника ABC соответственно равны: BC =15см, AB=13см, AC=4см. Через сторону AC проведенаплоскость альфа, составляющая с плоскостью данного треуголька угол 30градусов. Найдите расстояние от вершины В доплоскости альфа.


Геометрия (154 баллов) | 116 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

h - высота к стороне АС в АВС, основание её пусть К, опустим так же перпендикуляр на плоскость из точки В, основание обозначим за Р. Плоскость ВРК перендикулярна АС (в ней есть 2 прямые, заведомо перпендикулярные АС - это высота и ВР, которая вообще перпендикулярна всей плоскости альфа, содержащей АС).Поэтому в прямоугольном тр-ке ВКР угол РКВ равен 30 градусам (так в условии). следовательно ВР равно половине ВК, и нам осталось найти высоту ВК = h. Обозначим так же АК за х для простоты формул.

h^2 + x^2 = 13^2;

h^2 + (4 - x)^2 = 15^2; h^2 +x^2 - 8*x + 4^2 = 15^2; x = (13^2 + 4^2 - 15^2)/8 = - 5;

то, что х получился отрицательным, пугать не должно - это просто означает, что угол САВ тупой, и основание высоты лежит за пределами АС. На величину h это не влияет - из первого соотношения h = 12;

Ну, а искомое ВР = 6;

 

(69.9k баллов)