Помогите решить задание!!! найти наименьший положительный корень уравнения, с решением...

0 голосов
37 просмотров

Помогите решить задание!!!
cos \frac{ \pi (x-49)}{21} = 0,5
найти наименьший положительный корень уравнения, с решением пожалуйста!
заранее спасибо!!!


Алгебра (15 баллов) | 37 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Упростим выражение, чтобы найти первое решение.
Возьмем обратный косинус с обеих сторон уравнения для извлечения X изнутри с косинуса:
\frac{ \pi (x-49)}{21} =arccos (0,5)
Вычисляем arccos (0,5), получая \frac{ \pi }{3}:
\frac{ \pi (x-49)}{21} = \frac{ \pi }{3}
Умножим числитель первой дроби на знаменатель второй дроби. Приравняем это к произведению знаменателя первой дроби и числителя второй дроби:
( \pi (x-49))*(3)=(21)*( \pi )
Решим уравнение относительно x:
x=56
Функция косинуса положительная в первом и четвертом квадрантах. Для нахождения второго решения вычтем значение угла из 2 \pi и определим решение в четвертом квадранте:
\frac{ \pi (x-49)}{21} =2 \pi - \frac{ \pi }{3}
Упростим выражение, чтобы найти второе решение.
Решим относительно x:
x=84
Вычтем полный оборот 2 \pi из 84, пока угол не упадет между 0 и 2 \pi. В этом случае 2 \pi нужно вычесть 13 раз:
x=84+13 (2 \pi )
Умножив 2 на -13, получим -26:
x=84-26 \pi
Найдем период.
42
Период функции cos( \frac{ \pi (x-49)}{21} ) равен 42, то есть значения будут повторяться через каждые 42 радиан в обоих направлениях:
x=56±42n; 84-26 \pi±42n.