Осевое сечение цилиндра - квадрат, длина диагонали которого равна 4√2 см. Найдите площадь...

0 голосов
77 просмотров

Осевое сечение цилиндра - квадрат, длина диагонали которого равна 4√2 см. Найдите площадь полной поверхности цилиндра.


Алгебра (37 баллов) | 77 просмотров
Дан 1 ответ
0 голосов

Осевое сечение цилиндра - квадрат, диагональ которого равна 4 см, тогда
сторона квадрата по т Пиф = \sqrt{16/2}=\sqrt{8}=2\sqrt{2}
тогда радиус= \sqrt{2}
значит Sосн=\pi*R^{2}, тогда
Площадь 2 оснований = 4\pi
S бок пов = длина окружности * высоту, значит
S бок пов =2\pi * R * h=2\pi*\sqrt{2}*2\sqrt{2}=8\pi
S полн пов= 2Sосн+S бок пов=4\pi+8\pi=12\pi см квадратных

(38 баллов)