№1
общая формула S(n) = b1*(q^n -1)/(q-1)
1)b1=5; g=-1; n=9
S(9) = 5*((-1)^9 -1)/((-1)-1) = 5
2) b1=2; g=2; n=5
S(5) = 2*(2^5 -1)/(2-1) = 62
3)b1=1/8; g=5; n=4
S(4) = 1/8*(5^4 -1)/(5-1) = 39/2 или 19.5
№2)
знаменатель прогрессии q =1/8 / 1/4 = 4/8 =1/2
b1 = 1/4 ; bn = 1/512
сумма -n- членов S(n)
S(n)= (bn*q -b1)/ (q-1)=((1/152)*(1/2) -1/4) / (1/2-1)= 75/152