Дан параллелограмм. Докажите, что площадь параллеграмма, образованного серединами его...

0 голосов
55 просмотров

Дан параллелограмм. Докажите, что площадь параллеграмма, образованного серединами его сторон, равна половине площади данного параллелограмма.


Геометрия (17 баллов) | 55 просмотров
Дан 1 ответ
0 голосов

1) Пусть дан пареллелограм ABCD, т.K,L,M,N - средины сторон AB,BC,CD,AD соответственно. BC||KM||AD и AB||LM||CD. KBLO- параллелограм  и ΔKBL=ΔKLO, аналогично можно доказать равенство и остальных треугольников, а это значит что площадь KLMN равна половине площади ABCD, то есть площадь KLMN=20/2=10

 

2) Дано трапеция ABCD,AB||CD, т. O- точка пересечения диагоналей

    ΔAOB подобный ΔDOC,как имеющие равные углы AOB и DOC и лежащих  между параллельными прямимы.

В подобных треугольниках площади относятся как квадраты коэффициентов подобия, то есть AOB:COD=1:9

(109 баллов)