Дано: x^2+y^2=48 При каких x, y значение x*y^2 будет наибольшим? Что знаю по решению:...

0 голосов
20 просмотров

Дано: x^2+y^2=48
При каких x, y значение x*y^2 будет наибольшим?
Что знаю по решению:
y^2=48-x^2
Функция будет y=x*(48-x^2)
А дальше как?


Математика (93 баллов) | 20 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Функция y=x*(48-x²) = -x³ + 48x.
Находим производную:
y' = -3x
² + 48.
Приравниваем нулю:
 -3x² + 48 = 0,
 x² = 48/3 = 16.
х = +-√16 = +-4.
Это критические точки.
Находим значения функции в этих точках.
F(-4) = -(-4)
³ + 48*(-4) = 64 - 192 = -128  это минимум функции.
F(4) = -4
³ + 48*4 = -64 + 192 = 128 это максимум функции.
Одно значение х = 4 найдено.
y²=48-x²
y = +-√(48 - x²) = +-√(48 - 16) = +-√32 = +-4√2.
При x = 4, y = +-4√2 значение x*y^2 будет наибольшим.

(309k баллов)