Решение неравенства lg(x-2)+lg2<2 ответ должен получиться (2; 52)
Lg(x-2)+lg2<2 ОДЗ: x-2>0 x>2 lg(2*(x-2))2*(x-2)<100 |÷2<br>x-2<50<br>x<52<br>Ответ: x∈(2;52).
ОДЗ логарифма: x-2>0 x>2 Решим неравенство сведя левую и правую часть к двум логарифмам с одинаковым основанием: lg(x-2)*2(x-2)*2<100<br>2x-4<100<br>2x<104<br>x<52, Наложив на это решение ОДЗ получим, что решения лежат на промежутке (2;52)