А=ВС=√2.
Прямые АВ и СВ1 - скрещивающиеся.
АВ ⊥ пл. ВВ1С1С, т.к. АВ⊥ВВ1 (как стороны квадрата АВВ1А1) и
АВ⊥ВС (как стороны квадрата АВСД). ⇒
АВ⊥ ВС1 (вторая диагональ).
Но диагонали квадрата перпендикулярны и в точке пересечения (обозначим её буквой О) деляться пополам. Поэтому ВС1⊥В1С.
Нашли общий перпендикуляр для скрещивающихся прямых АВ и СВ1. Это будет половина диагонали ВС1 , то есть ВО:
ВО=1/2·ВС1=1/2·√(2+2)=1/2·√4=1/2·2=1