Очень нужно решение 4 задачи. Треугольник АВС-правильный, О- центр окружности ,вписанной в треугольник АВС, АВ=12, ОМ=4. Найти расстояние от точки М до прямой ВС
В правильном треугольнике медианы точкой пересечения делятся в отношение 2:1 считая от вершины . Рассмотрим треугольник АBE ( угол Е равен 90° , АЕ = 6 ( как половина стороны АС) АВ = 12 ( по усл.)). По теореме Пифагора найдем ВЕ. ВЕ^2 = АВ^2 - АЕ^2 . ВЕ^2 = 144 - 36 = 108 . ВЕ = корень из 108 . (108 : 3 ) × 2 = 48 . ВО = корень из 48 . Рассмотрим треугольник ВОМ ( ОМ = 4 , ВЕ = корень из 48 ). По теореме Пифагора : ВМ^2 = ВО^2 + ОМ^2 . ВМ^2 = 48+ 16 = 64. ВМ = 8 . ОТВЕТ : 8
А можете ещё вот эту решить, пожалуйста. https://znanija.com/task/27461825
3 минуты подожди