Сумма разности квадратов двух последовательных натуральных чисел и разности квадратов...

0 голосов
36 просмотров

Сумма разности квадратов двух последовательных натуральных чисел и разности квадратов следующих двух последовательных натуральных чисел равна 38.Найдите эти числа,если разности квадратов неотрицательны


Алгебра (71 баллов) | 36 просмотров
Дан 1 ответ
0 голосов

K - первое число
(k+1) - второе
(k+2) - третье
(k+3) - четвертое число
1) Находим разность квадратов первых двух последовательных натуральных чисел 
(k+1)² - k² = k²+2k+1-k² = (2k+1)
2) Находим разность квадратов следующих двух последовательных натуральных чисел 
(k+3)² - (k+2)² = k²+6k+9-(k² +4k+4)= k²+6k+9-k² -4k-4 =
= (2k+5)
3) Сумма полученных разностей квадратов равна 38, получаем уравнение:
(2
k+1)+(2k+5) = 38
             4k + 6 = 38
             4k=38-6
             4k=32
             k = 32 : 4
            k = 8
Итак, получаем:
8 - первое число
8+1=9 - второе
8+2=10 - третье 
8+3=11 - четвертое число
Ответ: 8; 9; 10; 11.

(19.0k баллов)