Основанием прямого параллелепипеда ABCDA₁B₁C₁D₁ является параллелограмм ABCD, стороны...

0 голосов
3.0k просмотров

Основанием прямого параллелепипеда ABCDA₁B₁C₁D₁ является
параллелограмм ABCD, стороны которого равны а*корень из 2 и 2а, острый
угол равен 45°. Высота параллелепипеда равна меньшей высоте
параллелограмма. Найдите:
а) меньшую высоту параллелограмма;
б) угол между плоскостью АВС₁ и плоскостью основания;
в) площадь боковой поверхности параллелепипеда;
г) площадь поверхности параллелепипеда.


Геометрия (12 баллов) | 3.0k просмотров
Дан 1 ответ
0 голосов

Вот параллелограмм - основание параллелепипеда на рисунке.
а) Меньшая высота h = BP = AP = AB*sin 45 = a√2*1/√2 = a, потому что треугольник ABP - прямоугольный и равнобедренный.
Высота параллелепипеда H = AA1 = h = a.
б) Диагональная плоскость ABC1D1 лежит под углом α к основанию
tg α = H / AD = a / (2a) = 1/2
α = arctg(1/2)
в) Площадь боковой поверхности параллелепипеда
S(бок) = 2*AB*H + 2*AD*H = 2*a√2*a + 2*2a*a = 2a^2*(√2 + 2)
г) Площадь основания
S(осн) = AD*h = 2a*a = 2a^2
Полная площадь поверхности
S = 2*S(осн) + S(бок) = 4a^2 + 2a^2*(√2 + 2) = 2a^2*(√2 + 4)


image
(320k баллов)