(x-3)/(x+4)<0<br>Дробь меньше нуля, когда числитель и знаменатель имеют разные знаки соответсвенно мы получаем две системы уравнений:
(x-3)<0 и (x-3)>0
(x+4)>0 (x+4)<0<br>первая нам даст
x<3 и x>-4 следовательно решением является x принадлежит(-4;3)
либо второй вариант из второй системы
x>3 и x<-4 следовательно решением является x принадлежит(-бесконечности;-4)и(3;+бесконечность)<br>Объедения эти решения мы получим, что х принадлежит (-бесконечности;-4) и (-4;3) и (3;+бесконечность)
x2 - 9 >0 - если это x^2 - 9 >0
то x^2>9 |x|>3 что записывается в виде: x принадлежит (-бесконечности;-3) и (3;+бесконечность)