F'(x)=e^(1/3x³-3x²+9x+5) *(1/3x³-3x²+9x+5)'=e^(1/3x³-3x²+9x+5) * (x²-6x+9)
e^(1/3x³-3x²+9x+5) *(x²-6x+9)≤e^(1/3x³-3x²+9x+5)
e^(1/3x³-3x²+9x+5) * (x²-6x+9) - e^(1/3x³-3x²+9x+5)≤0
e^(1/3x³-3x²+9x+5) * (x²-6x+8)≤0
x²-6x+8≤0
x²-6x+8=0
x₁=2
x₂=4
x∈[2;4]
Ответ:x∈[2;4]
Свойство функции, используемое при решении: E(f)>0