Если две стороны одного треугольника пропорциональны двум сторонам
другого треугольника, и углы, образованные этими сторонами, равны, то
такие треугольники подобны.
Поэтому обратим внимание на стороны АВ и ВС и стороны А1В1 и В1С1, а также на угол между ними, а он прямой - 90°.
Отношение сторон А1В1 : АВ = 6 : 3 = 2. Поэтому, если треугольники подобны, то сторона В1С1 д.б. равна ВС × 2 = 4 × 2 = 8. По теореме Пифагора вычислим сторону В1С1, и если она окажется равной 8, то мы доказали подобие.
