0,2 \\ x < > 0 \\ \frac{225}{x(1 - 5x)} + \frac{3(1 - 5x)}{x(1 - 5x)} = \\ \frac{225 + 3 - 15x}{x(1 - 5x)} = \frac{228 - 15x}{x(1 - 5x)} = \\ \frac{228 - 15x}{x - 5x {}^{2} } " alt=" \frac{15 {}^{2} }{x - 5x {}^{2} } + \frac{3}{x} = \\ \frac{15 {}^{2} }{x(1 - 5x)} + \frac{3}{x} = \\ x < > 0,2 \\ x < > 0 \\ \frac{225}{x(1 - 5x)} + \frac{3(1 - 5x)}{x(1 - 5x)} = \\ \frac{225 + 3 - 15x}{x(1 - 5x)} = \frac{228 - 15x}{x(1 - 5x)} = \\ \frac{228 - 15x}{x - 5x {}^{2} } " align="absmiddle" class="latex-formula">