Через конец хорды, делящей окружность в отношении 3:4, проведена касательная. Определите...

0 голосов
153 просмотров

Через конец хорды, делящей окружность в отношении 3:4, проведена касательная. Определите острый угол между касательной и хордой


Геометрия (12 баллов) | 153 просмотров
Дан 1 ответ
0 голосов
Пусть O - центр данной окружности и AB - ее хорда. Обозначим через x1/5 угловой величины меньшей из дуг с концами в точках A и B. Тогда величина большей из дуг равна 7x, а так как объединение этих двух дуг есть полная окружность, 5x + 7x = 360°, откуда x = 30°. Следовательно, величина меньшего из углов AOBравна 150°, а тогда из рассмотрения равнобедренного треугольника ABO получаем, что угол BAO равен 15°. Касательная к окружности, проходящая через точку A, перпендикулярна радиусу OA и, следовательно, образует с хордой AB угол 75°.
(136 баллов)